

CHROM. 5613

GAS CHROMATOGRAPHIC IDENTIFICATION OF THE MAIN AROMATIC HYDROCARBONS FROM THE CATALYTIC DEHYDROGENATION OF *n*-UNDECANE

L. SOJÁK AND P. MAJER

Institute of Chemistry, Komenský University, Bratislava (Czechoslovakia)

J. KRUPČÍK

Institute of Analytical Chemistry, Slovak Technical University, Bratislava (Czechoslovakia)

AND

J. JANÁK

Institute of Instrumental Analytical Chemistry, Czechoslovak Academy of Sciences, Brno (Czechoslovakia)

SUMMARY

The C_{11} -alkylbenzene products from the dehydrogenation of *n*-undecane were identified on the basis of relations between the structure and retention indices using the linear correlations of free energies found for C_8 - C_{10} methyl- and ethyl-monoalkylbenzenes separated on a squalane capillary column.

In a preceding paper¹, we discussed the separation of 43 theoretically existing C_6 - C_{10} aromatics by means of open tubular columns coated with squalane and polyethylene glycol 400. It is rather difficult to extend this field to C_{11} aromatics because there exist 68 possible compounds (of which 50 are alkylaromatics). The published retention data for C_{11} aromatics are therefore very incomplete². For the identification of the C_{11} aromatic products from the dehydrogenation of *n*-undecane, not only standards but also reference data were missing. The determination of retention data for C_{11} aromatics on the basis of the data for the C_6 - C_{10} aromatics using the principle of additivity, based on empirical rules, was shown to be inaccurate (Table I).

The validity of the correlations existing between the structure of C_8 - C_{10} -dialkyl derivatives of aromatic hydrocarbons and their retention data was therefore examined using linear correlations of free energy³. These relations were used for the identification of C_{11} alkylaromatics.

For the retention index of toluene, I_t , and substituted toluenes, I_x , the following relation was found by the method of least squares:

$$\log \left(\frac{I_t}{I_x} \right) = \varrho \cdot \tau_T + b \quad (1)$$

TABLE I

CONTRIBUTION OF THE METHYLENE GROUP TO THE RETENTION INDICES OF ALKYLAROMATICS

Component	I^s_{115}	I_{CH_2}
Benzene	653.6	
Toluene	760.7	107.1
Ethylbenzene	851.3	90.6
<i>n</i> -Propylbenzene	940.8	89.5
<i>n</i> -Butylbenzene	1039.6	98.8
<i>n</i> -Pentylbenzene	1137.6	98.0
<i>t</i> -Methyl- <i>o</i> -methylbenzene	888.1	
<i>t</i> -Methyl- <i>o</i> -ethylbenzene	968.8	80.7
<i>t</i> -Methyl- <i>o</i> - <i>n</i> -propylbenzene	1050.5	81.7
<i>t</i> -Methyl- <i>o</i> - <i>n</i> -butylbenzene	1148.0	97.5
<i>t</i> -Ethyl- <i>o</i> -ethylbenzene	1043.6	
<i>t</i> -Ethyl- <i>o</i> - <i>n</i> -propylbenzene	1122.3	78.7

where τ_T is the substitution constant = $\log (T_t/T_x)$ which expresses the variations in the electron configurations of methylalkylaromatics (x) according to the reference standard toluene (t), T_t and T_x are the boiling points ($^{\circ}$ K) of toluene and the alkylaromatic, respectively, ϱ is the constant characterizing the liquid phase, and b is a constant independent of the electron shifts in the molecule.

By correlating the retention indices, I , and the substitution constant, τ_T , for *ortho*-, *meta*- and *para*-C₆-C₁₀-methylaromatics using eqn. I, arranged into the form:

$$\log T_x = \log T_t - \frac{1}{\varrho} \left(\log \left(\frac{I_t}{I_x} \right) - b \right) \quad (2)$$

the boiling points of the alkylaromatics, which separate on a squalane column at 115°, were calculated. The values of the constants were $\varrho = 1.8224$ and $b = -0.0001$. The boiling points of the aromatics were calculated with an accuracy of $\pm 0.3^{\circ}$ K.

TABLE II

LITERATURE AND CALCULATED BOILING POINTS OF MAIN CHARACTERISTIC C₁₁ ALKYLAROMATICS AND THEIR RETENTION INDICES ON SQUALANE AT 86, 100, 115 AND 130°C

Component	Literature b.p. (°C)	Calculated b.p. (°C)	I^s_{86}	I^s_{100}	I^s_{115}	I^s_{130}	$r_0 \left(\frac{\delta I^s}{\delta T} \right)$
<i>t</i> -Ethyl- <i>o</i> - <i>n</i> -propylbenzene	203	202.1	1113.9	1118.1	1122.3	1126.9	2.90
<i>n</i> -Pentylbenzene	205.5	205.6	1129.5	1133.5	1137.6	1142.3	2.78
<i>t</i> -Methyl- <i>o</i> - <i>n</i> -butylbenzene	208	207.9	1139.1	1143.7	1148.0	1152.8	3.06

On the basis of the retention indices determined for the aromatics produced from the dehydrogenation of *n*-undecane, eqn. 2 was used to calculate the corresponding boiling points in °K. The values determined were converted into °C and compared with the published data for the C₁₁ alkylaromatics⁴. From these data and the mechanism of dehydrogenation of C₆–C₁₀ *n*-alkanes to aromatics⁵, the alkylaromatics in the C₁₁ dehydrogenation product were identified. The results are given in Table II.

These calculations confirm the identification of 1-methyl-2-*n*-butylbenzene because this is an alkyl-substituted toluene. The identification of 1-ethyl-2-*n*-propylbenzene was confirmed by the correlation of the retention index of ethylbenzene, I_{eb} , and the retention index of alkylsubstituted ethylbenzenes, I_x , with the chromatographic substitution constant, $\tau_T = \log\left(\frac{T_{eb}}{T_x}\right)$ ($\varrho = 1.8195$, $b = -0.0019$, standard deviation of $T_x = \pm 0.2^\circ\text{K}$). The calculated boiling point for 1-ethyl-2-*n*-propylbenzene was $T_x = 202.2^\circ$.

In the case of *n*-propyl derivatives, a decrease in the increment values was observed, caused by a tendency towards ring conformation. Similar anomalies were observed with alkenes with similar structures suitable for ring conformation, e.g., *trans*-2-hexene⁶ and *trans*-3-heptene⁶. The constant incremental contribution to the retention index of the methylene group in the *n*-alkyl chain of aromatics becomes evident from *n*-pentylbenzene (Table I).

The calculated changes in the retention indices with temperature on the squalane column for the C₁₁ alkylaromatics are in Table II, $10(\partial I/\partial T) = 2.78$ to 3.06 , are approximately equal to the corresponding values for C₁₀ aromatics resulting from dehydrogenation³.

The aromatic products formed as impurities in straight-chain undecenes⁷ during the catalytic dehydrogenation of *n*-undecane are mainly *ortho*-derivatives of toluene, ethylbenzene and *n*-alkylbenzene. This composition presupposes the formation of the aromatics by the dehydrocyclization of alkenes that have a double bond in various positions, and not by the direct dehydrocyclization of the *n*-alkanes. This type of reaction is specific for a certain type of oxide catalyst.

REFERENCES

- 1 L. SOJÁK AND J. HRIVNÁK, *Ropa Uhlie*, 11 (1969) 361.
- 2 F. BAUMANN AND S. M. CSICSEY, *J. Chromatogr.*, 26 (1967) 262.
- 3 J. KRUPČÍK, O. LIŠKA AND L. SOJÁK, *J. Chromatogr.*, 51 (1970) 119.
- 4 S. W. FERRIS, *Handbook of Hydrocarbons*, Academic Press, New York, 1955.
- 5 L. SOJÁK, A. BUČÍNSKÁ AND P. SKALÁK, *Ropa Uhlie*, 12 (1970) 357.
- 6 L. SOJÁK, J. KRUPČÍK, K. TESAŘÍK AND J. JANÁK, *J. Chromatogr.*, 65 (1972) 93.
- 7 L. SOJÁK, P. MAJER, P. SKALÁK AND J. JANÁK, *J. Chromatogr.*, 65 (1972) 137.